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GEOMETRIC DISCONTINUITIES IM ELASTOSTATICS1 

by 

M. K. Kassir2 and G. C„ Sih3 

Abstract. Three-dimensional elastostatic problems for an infinite 

solid uith geometric discontinuities are formulated and solved with the aid 

of potential functions. In the problem of a linearly varying pressure 

specified over a plane region bounded by an ellipse, use is made of the 

gravitational potential at an exterior point of a homogeneous elliptical 

disk. The problem of prescribing displacements on the surfaces of disconti- 

nuity is governed by the Newtonian potential of a simple layer distributed 

over a disk in the shape of the region of discontinuity. The mass density of 

the disk is proportional to the prescribed normal displacement. For an 

"ellipticeily-shaped" region, the application of the symmetrical form of 

ellipsoidal coordinates leads to an integral equation of the Abel type for 

the potential function. It is shown that if the displacements normal to the 
2   2 x   \i    % 2 2 2 2 elliptical plane are given by (1 - -s - *») Q (x ,y ), where Q(x ,y ) is a 

2     2a   b polynomial of degree n in x and y , then the corresponding normal stresc 
2 2 acting over the ellipse is slso a polynomial, P (x ,y ),of the ssme degree in 

2     2 x end y . In the case of a circular region of discontinuity, the solution 

can be carried out for any arbitrary value of n. The results sre useful in the 

prediction of the stability behavior of elastic solids containing geometric 

discontinuities. 

The work reported in this paper was carried out under Contract Nonr-610(06) 
uith the Office of Naval Research, U. 5. Navy. 
2 
Instructor of Mechanics, Lehigh University, Bethlehem, Pa. 

Professor of Mechanics, Lehigh University, Bethlehem, Pa« 
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1. Introduction. The redistribution of stresses due to the presence of 

geometric discontinuities in elsstic solids has been the subject of many 

past discussions. Among the three-dimensional problems considered previously, 

the majority of them pertains to geometries and applied loadings that possess 

axial symmetry. A collection of previous work can be found in the notes of 

Sneddon [lj and the references therein. The non-symmetric problems Involving       M 

geometric discontinuities are more difficult and have been investigated only 

in a limited number of special cases. 

A knowledge of the classical potential theory is pertinent to the 

formulation of boundary value problems with planes of discontinuities in the 

three-dimensional space« For definiteness sake, the region of discontinuity 

will be assumed to take the form of a plane ellipse described by 

o,1' tf '      }     °> (l.l) t f 

which is referred to a set of cartesian coordinates x, y, and z. The major 

and minor semi-axes of the ellipse are denoted by a and b, respectively. If 

pressures, p(x,y), are applied symmetrically to the upper and lower sides of 

the elliptical plane, the problem reduces to the determination of a single 

harmonic function [2J , f(x,yfz), satisfying the boundary conditions 

If if.      '       V **   (>*■   ' I (1.2) 

where A is the shear modulus of the elastic solid. Since f(x,ytz) is harmonic, 

these conditions may be expressed in the equivalent form 

4- tf*.))   ,       ($ + $*'»}'<>) ilM 
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it-o  ,  (| + ¥>''^°) 1 (1.5) 

and p*(x,y) la a particular solution of tha Polsson equation in two-dimensions 

9*1   »f 2p aM 

The problem is to determine the potential function f(x,y,z) euch that it 

satisfies (1.4) and (1.5). 

Green and Sneddon [3] have examined the problem of a flat elliptical 

discontinuity opened by a uniform pressure, p(xty) = constant. In part of the 

work to follow, p(xty) is taken to be a linear function of x and/or y, i.e., 

jpfo'i)  * C, + Cz%   + C3 ^ . (1.7) 

where c. (j»l,2,3) are constants related to the intensity of the applied 

pressure. An exact solution is given for the case of c. = c, = 0 and c„  = 

-p/2 II. The same method of solution may be used for c, = c„ « 0 and c, = 

-p /2U . An attempt has also been made to find f(x,y,z) corresponding to a 

general expression of p(x,y), say 

m 

4>(*>1)  * I (A. #"♦ ßa if") (1.8) 
w« o 

The end results appear to be rather restricted in the sense that the corffi- 

cients A , B of the polynomial p(x,y) are required to depend upon each 

other. 

An alternative formulation of the problem is to determine the distribu- 

tion of pressure necessary to preserve certain shape of the surfaces of 

discontinuity. This can be accomplished by specifying equsl and opposite 

normal displacements, q(x,y), on the region given by (1.1). For this class 

of problems, the boundsry conditions are 

*y       26-0)       a   b       *   J (*9) 
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ifc-o    ,       ($*£>', f-o) "•"» 
where t) is Poisson's ratio. Equations (1.9) and (1.10) show that f(x,y,z) la 

equivalent to the potential of a simple layer distributed over an elliptical 

disk. The mass density of the disk is proportional to q(x,y). For this reason, 

solutions of considerably general in nature may be found. In fact, if the 

9 
normal displacements are given by a polynomial q(x.y) of degree n in x and 

y , then the integrals representing f(x,y,z) can be evaluated in closed form. 

The only limitation for the elliptical geometry is that the degree of q(x,y) 

must be equal to m+£y m being a positive integer. The circular rjgion problem, 

however, is free from such a restriction. 

The problem of specifying pressures and/or displacementa, equal in magni- 

tude but opposite in sign, to the planes of a flat ellipse may also be formu- 

late''!. Kassir and Sih [k]  have shown that the the skew-symmetric problem 

requires the knowledge of two harmonic functions g(x,y,z) and h(x,y,z). The 

simple case of an eliiptically-shaped plane of discontinuity, whose surfaces 

are subjected to uniform shaer, was discussed in [*»J . Without further 

comments, it is obvious that a general treatment of the skew-symmetric problem 

follows immediately from the work presented in this paper and in CO . 

2. Equations in Elastostatlcs. Consider the problem of finding stresses 

and displacements in an infinite elastic solid whose continuity is interrupted 

by a void in the shape of a plane ellipse. The applied pressures or displace- 

ments on the upper surface of thia ellipse are equal to those on the lower 

surface. Hence, the problem is said to be symmetric with respect to the 

elliptical region located, say at z * o or in the xy-plane. Outside of thin 

region, the shear stresses T  and T must vanish at z = o. These conditions 
xz     yz 

may be satisfied by expressing the cartesian components u, v, and w of the 
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displacement vector i:i terms of a single harmonic function f(x,y,z) as 

r- «■*■>;Pf + $$}' (2.2) 

v * --*<^ ll + > ^ - C2-3) 

The details are omit„ed here since they have already been given elsewhere [z]  • 

In the usual way« the stress components 7" _i TM_t and 6"  are given by 

r» - v»; $? ■ lz-5'' 

For the mere purpose of determining the potential function f(x,yfz), the 

remaining stress components V    , D , and T  are not needed. 
* K       xx'  yy'      xy 

3. Linearly Varying Pressure. Let the two sides of the elliptical plane 

of discontinuity be subjected to a pressure that varies linearly with the 

coordinate x over the region in (1.1). The disturbance of the discontinuity 

diminishes at large distance away from the origin. Qn the plane z = o, (2.3) 

and (2.6) yield 

3%. -is* ,   (■& + -£<!, i-o) 
Jj1 2/1    ' a b ' f      J (3a) 

|f -    0 , (j£* £ >h  f-o) 
It is assumed here that the second and third derivatives of f(x,y,z) with 

respect to z are bounded in the limit as z approaches zero. These require- 

ments will be met in the subsequent analysis. 

- 5 - 
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The problem can be readily solved upon defining a neu harmonic function 

<jkxfy,z) related to f(x,ytz) by 

if .   * 2SJ - i Li   , (3.3) 
if        * if      t ?Z> 

where 2 ^. 

and V is the Laplacian operator in three dimensions. From (3.3), it can be 

shown that 

9» 9%K   Vl       J}  * »X2     *' (3.4) 

The limits of the integrals in (3.*») and (3.5) are introduced in such a way 

\   = fij(^) + / }  J^idl  ■ (3-5) 

that the stresses and displacements vanish as z goes to infinity. In terms of 

the function ^>(x,y,z), the displacements become 

OO 

Using (3.3)-(3.5), the stress components are 
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Thus, the boundary conditions (3.1) and (3.2) take the for» 

»X      " >)*■ Zjl     ' «   b     ' ».12) 

*94-?ft-°    *   ($+ ¥>'.>-<»; (3.13) 
Upon introducing a system of ellipsoidal coordinates, the position of a 

point can be determined by the three parameters E,7 » C, the limits of varia- 

tion of which are 

The cartesian coordinates x,y,z may be expressed in terms of these parameters 

by the relations 

«V- bl) <£ - 6t% I Ha+i)(a+C) oas) 

Wfl yl =   (fc% £ )(fcV ?K b\ C J , (3.16) 

«fc /   -   £>?£. (3.17) 
2 2 2 2 

In the plane z - o, the inside of the ellipse x /a +y /b »1 may be 

distinguished from the outside by setting Es o and ^ * o , respectively. 

The boundary of the ellipse is identified by £ ■ fj ■ o. 

Since the function <f>(x,ytz)  is equivalent to the gravitational potential 

of a homogeneous elliptical disk at an exterior point x,y,z, the solution is 

given by [5] 

where 

Inserting (3.18) into (3.12) and (3.13), the constant A is found to be 

4 * ("tyT] 4!1 Kä)-Eli) ' (3-20) 

In (3.20), K(k) and E(k) are Legendre's complete elliptic integrals of the 

- 7 - 



first and second kind, respectively, for the modulus 

2      2      JL 
and k* * l - k . Once <p(x,y,z) is known, the stresses and displacements at 

any point of the solid can be calculated in a straightforward manner. 

For instance, the displacements u, v, and u in the plane z * o may be 

obtained readily from (3.6)-(3.8) which reduce to 

H-("->> fc(**+gf), (,.a) 
tr- 0-20) |^ + §g), (3.» 

in uhich 

Introducing the contraction 

ft2 fr*      ^   _>' 

0)(S)    *    /  -    a«fs    ~   htfS s     > (3.25) 

and substituting (3.18) into (3.2*0, the function Y°(.x,ytz)  may be represented 

by the integral 
Pd       Or* 

^-II^I^JIJ^ 
It follows that °     £ v/QS; 

£ >/0^J    ' (3.26) 

4. 

>1   . ifcQfe).      »* _  />««r     S<te__.    , (3.27) 
»»*     *4     W/ÖS      "   \ (W1GÜ 

The results of putting (3.18), (3.27), snd (3.28) into (3.21)-(3.23) are 

8 - 
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oö 

if- ~z(i~\))ftx, Um [> f -^ 1 - (3.31) 

The integrals in (3.29)-(3.31) may be evaluated in closed form. They are 
o6 

f      c/s £      rry t    j/i,      jz snii otic i 

and others of the same type. The quantity E(u) is 
U 

and snu, cnu, dnu are the Jacobian elliptic functions whose variable u should 

be distinguished from the x-component of the displacement vector. Here u is 

related to the ellipsoidal coordinate 2, by 

g  * a cnu./'snu.  ~ az($n'u - I) t (3.35) 

After some manipulations, the displacements for z ■ o are 

U - (J$r{'>?[0+&)u -2(i+^)E(u)+ Snu am dnu.] 

_y[|*M~l^r £W + -^sn 1^1^"»■]•!■ a11E(")-u]j >  '.3.36) 

a   * ö K «ft du U       J 

(3.37) 
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W ^F" * j«J }L—Snr ~ &"J •      (3.3B) 

On the plane surface of the discontinuity, i.e., for £ « o, (3.36)-(3.38) 

may be simplified since 

ÖW-B*) ,M-KöU ,  ^^- -~° >   <*  £^°- 
2 2 2 2 Hence, the deformed shape of the ellipse x /a +y /b = 1 is given by 

(3.39) 

-iL[*K(i)-0+^)E(i)] +az42[E(t)-K(k)]}> 

(3.U) 

The constant A has already been determined in (3.20). 

Of interest is the intensification of the normal stress 61 in the 

neighborhood of the geometric discontinuity. It is the local Novation of 

v   in the vicinity of the edge of the discontinuity ( %  -»ü, y -*o) that 

controls the stability behavior CO of the plane elliptical cavity. From 

(3.11) 

% - V("i» ~*f^ . }-0 (3.C2) 
Inserting (3.18) into (3.<*2) and integrating, the obtained result gives 

(3.U3) 
"Jy.o 
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The expression (3.^3) is valid only in the region outside of the ellipse 

2 2 2'' 
x /a *y /b1" * 1. To find (T  near the periphery of the elliptical boundary, 

the asymptotic value of 2£ is required, By taking a vector f normal to the 

curve that defines the ellipse with parametric equations 

% - a $in4>    ,     y * b cos<f> <3.M») 

the expansion 

6 "" (alSin2</> + blcosy>)"z 4""~ (3.45) 
is obtained far which terms of order higher than p have been neglected 

eince 0   , the magnitude of P   , has been assumed to be small in comparison 

with either a or b. In addition, it can be shown that 

The limiting forms of jjf, and £ lead to 

Denoting the coefficient of 1/JzF by k, and using (3.20) yield 

This is known as the three-dimensional "stress-intensity factor" [*♦] the 

critical vslue of which governs the onset of unstable motion of the geometric 

discontinuity under consideration. 

2 2 2 2 
The applied pressure on the ellipse x /a +y /b =1 may also depend on 

2n 2n %  , y j where n is a positive integer. For n » 1, the function 
<x> 

will satisfy the boundary conditions 

"■ 11 *" 



~iY = O j 1=0 U.51) 

However, the result based on (3.49) will obviously be limited to the type of 

pressure distribution as indicated in (3.50). Similar observations may be 

made for n greater than one. 

k.  Specification of Displacements«, As mentioned earlier, when the region 

of discontinuity undergoes certain normal displacements, q(x,y), that are 

prescribed, the problem can in general be solved for the distribution of the 

normal pressure which is initially unknown. The conditions (1.9) end (1.10) 

suggest taking the function f(x,y,z) as the Newtonian potential of a simple 

layer of intensity q(x,y) distributed over the plane region id in the shape 
2 2 2 2 of the ellipse x /a +y /b »1. The potential is 

where R denotes 

The function f(x,y,z) is harmonic and is continuous in the entire three- 

dimensional region excluding £1 . Furthermore, it vanishes for distances 

sufficiently far away from SI  since 

4--klwß)lh(x<Y)d*dY] >as R OÖ 

The normal derivative of f(x,y,z) is discontinuous for the transition from 

one side of ii , say z ■ o , to the other, z = o", i.e., 

t       t)~0 C-.3) 
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Hence, (1.9) and (1.10) are satisfied automatically when f(x,y,z) is cons- 

tructed fron the potential of a simple layer. 

For the present problem, it is more convenient to employ the symmetrical 

form of ellipsoidal coordinates 5» ^ i C as given in (3.14)-(3.17). 

Proposed as a possible solution is the function [ßj 

The variable CO  is defined by (3.25) or the equivalent *orm 

/life)  (S-Z) (S-Q) (5-Z) 

and A is a twice differentiable function in the interval (o,l) with finite 

one-sided derivatives at the boundary points of the interval. Differentiating 

(4.4) with respect to x renders 

32<fe) 

in which BO 

2 
satisfies the harmonic equation V I_ * 0. The remaining expressions of 

Qf/Qy, d  f/'Öy , and ftf/Bz, 7Tf/7>z    ,  may be obtained simply by permu- 

tation of tha variable x in (4.5), (4.6) to y and z, respectively. As a 

result, the Laplacian of f(x,y,z) can be writted as 

with the knowledge that [7] 

Now, computing the derivatives 
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axr aVs l ö +5        J 

and etc., the integrand, V  A (CD), in (4.7) becomes 

\A<W - - *H ^)+W*>W « 4-Joy &( A ] Qfe) """'T T w' "*"" - "*• W ß I JOfti J '     ((..8) 
By means of (4.7) and (4.8), f(x,y,z) is indeed a solution of the equation 

There remains the determination of A(ft)) which may be evaluated from 

the boundary conditions (4.2) and (4.4). First of all, replacing x by z in 

(4.5) and using the relation 

the result is 
X ew> 

[ic(Av(£+ti 

While (4.9) satisfies (4.3) for ^= o, it reduces to an integral equation of 

the Abel type for |=o 38 dictated by (4.2). This will be shown in the next 

section. 

äs. Tne Abel Integral. Applying the boundary condition (4.2) for points 

2 2 2 2 + 
of xp y inside x /a +y /b ■ 1 and z-^o , (4.9) may be written as 

The reduction of (5.1) to Abel's equation may be accomplished by changing the 

variable of integration from a to o( - 1 - £/s and by keeping in mind that 60 

is a function of s with the limiting form 

where 

7 C - &*l% 2 , *U   Z - /- $ - ft ■ 
**   ^ (5.2) 

14 - 
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Under these considerations, (5.1) reduces to 

-^jy- -ZJ( *W)JT7« Z* (5.3) 

An additional change of variable to ß * o( I  gives the Abel integral equation 

W ,     „Z  A  , 
^feyrz)      f *ft) dg + 2^- 
4-(MJ)  " Ja h~$ Z* (5-° 

In order to solve for 7ii(0)t  both sides of (5.4) are integrated from o to 60 

by dZ/j (0 - 2'. Hence, (5.4) becomes 

I (5.5) 
^Z'^J^Z    J*Srt^zh >TZ-^       U.(M>^0  vTä-z 

The integrals on the left hand side of (5.5) may be evaluated yithout diffi- 

culty the first of which is 

Jo Z v/öJ^Z      ° 
The order of integration of the second integral 

a)       1 

(5.6) 

J, \fciPz Jo Tz- % (5.7) 

may be interchsnged since the integrands possess weak singularities. Applica- 

tion of the Dirichlet formula [?] gives 

f7l{f)dj 
fjfoKzxi?-?; 

T/ Tlfydp * T[?)(CO)-7)(O)] . 
(5.B) 

Substituting both (3.6) and (5.S) into (5.5) yields the aolution of (5.4) as 

Thus, (5.9) solves the problem of prescribing normal displacements q(Z) on 

an elliptically-shaped plane of discontinuity. 

6. Theorem. On the basis of the results obtained in fhe previous section, 
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the following theorem may be established: 

"Let the normal displacements, q(x,y), on the plane surfaces of the 
2   2 

ellipse x2/a2*y2/b2 = 1 be given by (1 - *^ - ^)* Q^x^y2), where Q^x^y2) 
2  2   a   b 

is a polynomial of degree n in x , y . Then, the normal pressure acting over 

2 2 2 2 
the ellipse is also a polynomial, P(x ,y ), of the same degree in x ,y ." 

Now, suppose that 

£6^)« Z* Z Cj  Z  . (6.1) 
2 2 

It suffices to prove the theorem by taking Q (x ,y ) in the form of (6.1). 

The coefficients C. (j«o,l, m"tn)  are constants and Z is given by (5.2). 

Putting (6.1) into (5.9) and carrying out the integration yields 

in which P(n) is the customary Gamma function. Before the normal pressure 

O  can be calculated, the harmonic function f(x,y,z) must be obtained from 

U.O: 

4'*«> - fA, Z-. y& c> LM'"& • <«.» 
In the plane z * o, (2.6) simplifies to 

(e»)hr
z^4+%)>.,- (6.<0 

Adopting the notation 

T   " \      _   ,  x2      V* (.6.5) 
[  £ ,  (i?4■£>'' f'o) 

and using (6.3), it is found that 

Q&) (6.6) 
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-<r*+<&flcW^}. 
where 

The Integrands containing (ft) (s)]nf (n=l,2l««»)>may be expanded in terns of 

2 2 
x ,y to give 

in which A. (j«o,lt2,«-»tn) are 

and so on. The constants B , •••, B9 are related to C. (j=o,l,2) as follows: 

ß.-S^LT^H)c.     6     j^fjadi c-    5,-35, 
A* 2 2 

From (6.7), ( 0 )   is seen to be a polynomial of degree n in x ,y whose 

coefficients depend on oo 

These integrals can be reduced to the complete elliptic integrals of the 

2 2     ?* 
first and second kind with modulus k si- (b/a) for £ ■ o. 

The aforementioned theorem also applies to the skew-symmetric problem 

of specifying displacements u, v on the elliptical plane of discontinuity. 

This is mainly because the boundary conditions on u„ v are the same as those 

described by (4.2) and (4.3) since Kassir and Sih [k]  have already shown that 

fur the skew-symmetric case the displacements are 



jiäk. 

where 

and 

For this problems, the anear stresses TL.» T,_ will be polynomials of degree xz   yz 
2  2 

n in x , y if the displacements u, v are represented by polynomials of the 

form (6.1). 

In the two-dimensional case, Snsddan [l] has observed that the prescribed 

shape of a slit in an Isotropie medium and the resulting surface pressure may 

be represented by polynomials of the same degree in one variable. Galin CsJ 

has considered the three-dimensional problem of an elliptical punch pressing 

ageinst a semi-infinite elastic solid whose surface outside the '„rea of 

contact is free from tractions. The frictional forces acting between the punch 

and the semi-infinite body are neglected. He showed that if the base profile 

of the punch is given by a polynomial of degree n in xp y, then the pressure 

acting over the punch is another polynomial. Galin'a proof is based upon the 

properties of Lame triple product, which is different from that given in the 

present paper« 

2A JJH Symmetric Proble». A sufficiently general description of the 

shape of the elliptical plane of discontinuity is 

n 
%(%)   -    % Z     . (7.1) 

where q denotes the amplitude of the normal displacement» The restriction 

on the exponent n becomes apparent when the functions 
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Ö JL X 

and oo 

are derived from (5.9) and (4.4), respectively. The normal pressure distri- 

bution required to support the shape (7.1) can be obtained from (6.1*) and 

(7.3). For the range of n between 1/2 and 3/2, 0  in the plane z » o is 

c°»V»      CMWT rwfj  l J|+J*+* »* ^? »^ J, t *n 4 z »"■" 
where I,, I« represent the integrals , 

and T is defined by (6*5). If n ^3/2, the expression for ( 6*__)_  is 

less complicateds 00 *-f 

*-I- ,   -, (7.5) 

-M{f(|A^)lJN '&}""*■ 
In general, the integrals appearing in (7.4) and (7.5) can be evaluated for 

n -  m + %  where m - o,l,2, "*s   .In the degenerate case of a circular region 

of discontinuity, solutions may be found for any value of n. 

äs. Elliptical Region for n * 1/2 and n ■ 3/2. A special case of (7.4) is 

n ■ 1/2, which corresponds to the problem of a plane elliptical cut opened 

by a normal pressure, (^2z^z-o 
s constant* The opening of the cut is ellip- 

soidal given by j. 

This problem was formulated by Green ans Sneddon [3 ] . In a later paper, 

Kassir and Sih [k~] pointea out that the stresses at the border of the cut 
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are singular of the order of 1/1^• Tne distance ^ is measured in a plane 

2 2 2 2 
perpendicular to the boundary of the ellipse x /a +y /b »1. 

Therefore, it is natural to Inquire whether cuts of a shape other than 

ellipsoidal are possible and, if they exist, to determine the pressure necessary 

to preserve their shape. Consider the case 

1(2)  - ?. Z'\ (8.1) 
For n = 3/2, (7.5) specializes to ^ 

9 I /M 
e*> -<* 

~ 3 y i (feVsyVQi; f* f ^ I C<6*X#H5)/QS) J ' 
o/s      1 (8.2) 

r 
The integrals in (8.2) may be evaluated in a manner similar to those shown in 

(3.32) and (3.33). 

The normal pressure inside of the elliptical region, r « o , is 

Ulhen a * b and E(k) = H(k) = TF/2, (8.3) gives the internal pressure for a 

penny-shaped cut of radius a, i.e., 

<H.-&#r'-*^ , ~* (8.U) 

The sign of ( 6" )   changes from negative to positive at the ratio of 
ZZ ZaO 

(r/a)Ck 0.8. This means that both compressive and tensile stresses must be 

applied to the surfaces of the cut ir order to produce the shape (8.1). 

Outside of the region of the ellipse, ( vM)w-ri may be found by setting 

Y* £ in (8.2): 
2Z   Z=0 

<^--&>*{*»-*3£ (8.5) 
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In contrast to the singular solution for n « 1/2, the stresses remain finite 

on the boundary of the elliptical cut. In fact, in the limit as £ -#• o, (8.5) 

is of the order of f> . The same behavior is observed for the particular case 

of a » b since (8.5) reduces to 

where ( ^TZZ)ZS! 9oes to infinity as 0(l/r ). When r approaches a, the circulsr 

boundary, the normal pressure 

is found to be non-singular. 

It should be mentioned that (S.O and (8.6) may be obtained directly 

from the method of Hankel transform for solving axially symmetric problems [9.] 

9. Circular Region for Arbitrary n. The theory of potential functions may 

also be applied expediently to a class of problems involving penny-shaped 

planes of discontinuities. For a = b, (?.*♦) can *3e solved in general without 

imposing restrictions on the exponent n as I, = I_ = I and 

The integral I is 

and the symbol "^ stands for 

f o , rid 
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Making the substitutions 
.2-   Q+n r.   S=X    .       € - 

S -1 <£+%> 
in (9.2), the integral I becomes 

«fry*    f rjPF* . 

The determination of ( Ö2-)-mn for r<a and r> a yill be carried out separately, 

2 2   2 
Inside of the region x +y »a and fcr z « o, the ellipsoidal coordinates 

£ , # take the values T 

5-0, q=T-CL, 
2   2      2 

and € = k = (r/a) . Hence, (9.*») reduces to the standard Legendre elliptic 

integral m / 

where 

A further substitution of *0 = snu leads to 

'^'g.0* O^^M '^*.~& ^+2^- (9.6) 

In (9.6), J reoresents the integral m , 
X 

•Jm Ä j    W a)   eta » (9-7) 
o _ 

(9.8) 

whose values for m = o,l„2,   ••■•,  are given by  [lo] 

and the recurrence formulas 

Jvn+z  ' (~J^. I^fe-^4, + («*) J«« ] , (9.9) 

In order to complete the calculation of ( 0" )   for £ ■ o, it is necessary 

to find from (9.2) the quantity 
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J&K 

Same lengthy algebra gives \ 

jiz».   r   /» (9.12) 
--■fr .. J £* (J        ^T        ) 

as*bz 1  -** ^« - * -W > 

uhere J is given bv (9.7). Using (9.1), the internal pressure, ( v/„)_ _ , 
In ™ ZZ Z—D 

in the region r<a takes the *ori» 

+ frz-u* •+ #'; J«« - &+*) *'* JU». ]  , 
which is valid for arbitrary value of n. Three special cases of (9.13) will 

be considered by application of (9.B)~(9.10). 

Case 9.1(a)r The necessary normal pressure to maintain the shape 

may be computed from (9.13) by setting n = 1/2 as 

This is in agreement with Sneddon's answer [9 J o 

Case .9.2(.a).. If n * 1, (9.13) simplifies to 

(9.15) 

At first sight, (9.15) appears to be different from the solution published 

~ 23 - 



by Sr.eddon [9J for the same problem,  i.e., 

«H- - -X * P&& k*> - ** - °*> R*>) ■ "■"> 
in which 

(d+r) 
However, by means of the Landen transformation, the complete elliptic integrals 

in (9.16) can De written as 

The identities (9.17), (9.18) show that (9.16) and (9.15) are indeed equivalent. 

Case 9.3(a). Ir. the case of n = 3/2, (S.fc) is recovered from (9.13) 

In the same fashion, ( v )   outside of the circular plane of discon- 
7.x. 2—0 

tinuity may be obtained by letting 

and i 

■>>   2   2 which is found from (9.4) for ^ « o , € = k = (a/r), and fc» r - a . The 

substitution v ~ snu allows (9.20) to be 

where 

<■ 2^ «■ 



AL    .   f      I^ÜOÜL    dlL (9.23) 
«    (onu; 

The integrals (9.22) can be expressed in terms of the complete elliptic 

integrals and elementary functions in the follouiny manner [lo] : 

m> TJ' '   l     #4!1    '       ***' 
The recurrence relationships are 

0   t   • 
•  (9.2*0 

Hw, - ,A»,L^ [(2mn(Z^)M2mH^m M-] .    (9.2S) 

In addition, the integral (9.23) admits the relations 

in which K 2M 

If the exponent n * m/2, m being an integerp then (9.20) is reducible to 

elementary ♦'unctions. Finally9 the normal pressure for r">a is deduced: 

(9.2?) 

^#>o  C^)7rr(n-f|-) *v'*  1^4* 2„     Ä--ft A/2J 
(9.28) 
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The values of (b ) _ n  that correspond to n * 1/2. 1. 3/2 are as follows: ZZ y «0 

Case 9.1(b). Instead of using (9.28), it is simpler in the case of n*& 

to compute (Ö    )M   directly from (9.1) zz r) =o      * I 

6yi-ö*<to- 
0     O-AVJ1 (9.29) 

These integrals are elementary giving 

which checks with that obatined by Sneddon [93 • j 

Case 9.2(b). Letting n = 1 in (9.26) and carrying out the algebra 

render 

which is Q(l/r) for large r. At the boundary points of r = a, (v)    is        £ 

unbounded. 

Case 9.3(b). The limiting form of (9.28) for n * 3/2 corresponds 

precisely to (8.6) which has already been discussed. 

10. Conclusion. The problem of finding stresses and displacements in 

an elastic solid with geometric discontinuities has been reduced to the 

classical boundary problem of potential theory. Harmonic functions are 

developed for the case of an elliptically-shaped plane of discontinuity 

whose faces are subjected to pressures and/or displacements. While the present 

paper is primarily concerned with the calculation of the normal displacement 

u and the corresponding pressure 0      » the remaining displacements and 

stresses may be obtained from (2.1), (2.2), (2.<t), and (2.5) without difficulty. 

Furthermore, with the knowledge of f(x,y,z), the stress components [2] 
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fo. _ 2a ( *\ -+*0 $&* +j 2?L.) (lo.i) 

^-*/*(!& **>^fc 4jÜt-\ (10.2) 

are also known. The method of solution outlined in the paper may be used to 

solve other boundary problems of fundamental interest. For example, the 

8kew-symiBBtric problem of specifying displacements u, v on the surfaces of 

the geometric discontinuity may be formulated and solved in a similar manner. 
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